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LETTER TO THE EDITOR 

Landau levels in confined two-dimensional electron gas: 
calculation by the finite-element method 

H Stikova?, L SmrEkai- and A IsiharaJ: 
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Czechoslovakia. 
j: Department of Physics, State University of New York at Buffalo, Buffalo, New York, 
NY 14260, USA 
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Abstract. The finite-element method for electronic structure calculations for narrow two- 
dimensional systems in perpendicular magnetic fields is suggested as a feasible alternative 
to the conventional tight-binding model. The accuracy and versatility of the method are 
illustrated for the case with a rectangular well. As an example of a more realistic problem, 
the influence of the magnetic field on the charge-density distribution in a narrow two- 
dimensional sample with an oblong well at its centre is investigated. 

Narrow two-dimensional electron systems with electrons spatially confined in a con- 
trolled way are pertinent to the most significant recent developments in semiconductor 
physics. The high speeds and novel electronic properties of these structures make them 
promising candidates for a new generation of electronic devices. Therefore, it is worth 
making efforts to clarify and describe the phenomena that occur in such systems. 

In many cases, fundamental electronic properties of the narrow systems follow 
from simple analytically solvable models. Nevertheless, for a more realistic description 
numerical calculations are often required. The lattice tight-binding model has been most 
frequently used to determine the electronic structure in both the zero and a strong 
magnetic field perpendicular to a two-dimensional system (Harper 1955, Rabinovitch 
1969, Schweitzer et a1 1985, Lovesey 1988, Czycholl and Ponischowski 1988, Kramer 
and MaSek 1988). Recently, this model has been carefully reinvestigated in comparison 
with the continuum free-electron model (Gudmundsson et a1 1988). 

In this contribution, we suggest the finite-element method as a feasible alternative 
to the conventional tight-binding model for treating narrow two-dimensional electron 
systems. The potential of this method was first recognised by engineers. Subsequently, 
as its mathematical foundations became established, it was applied with success to a 
great variety of fields including quantum mechanics (Computer Physics Reports 1987). 
Here, we attempt to utilise it for the first time in calculating the electronic structure of 
a confined two-dimensional electron gas. For application to one-dimensional electron 
systems in magnetic fields see, e.g., Maan (1987). 

We assume a two-dimensional system of non-interacting electrons in the magnetic 
field B = (0, 0, B)  oriented perpendicularly to the system. The length and the width of 
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the system are denoted by L, and L,, respectively. The wavefunction q(x,y) of an 
electron satisfies the periodic boundary conditions in the x direction 

V ( - L / 2 ,  Y> = V(LX/T Y> Y E (-L,/2, (1) 

V(x, -&/4 = V ( X ,  & / 2 )  = 0 (2) 

and the Dirichlet boundary condition in the y direction 

x E ( - L A  L,/2). 

For simplicity, the spin is not taken into account. The electron motion is described by 
the one-electron Hamiltonian with the potential V(x, y) 

H = (1/2m>(px + eByI2 + ( 1 / W p :  + V(X,Y> (3) 
where e is the charge on an electron and m is its mass. 

The basic idea in using the finite-element method for our problem is to cover the 
region (-L,/2, L,/2) x (-L,/2, L,/2) by a mesh of knots and to express the wavefunc- 
tion as a linear combination of the basis functions localised around the knots, i.e. each 
basis function is non-zero only in a finite region surrounding a knot (the mathematically 
correct definition can be found, e.g. ,  in Prenter 1975). This is reminiscent of the tight- 
binding method in which the Wannier functions localised around the equidistant posi- 
tions of atoms form a basis set. Usually, the Wannier functions themselves are not 
specified but are introduced into the problem only through the matrix elements of the 
zero-field Hamiltonian. The effect of the magnetic field is subsequently incorporated 
into the tight-binding Hamiltonian via the Peierls substitution (Peierls 1933, Luttinger 
1951, Hofstadter 1976, Wannier 1978). In the finite-element method the basis functions 
are given explicitly in an analytic form. This allows the direct evaluation of all matrix 
elements, and the resulting eigenfunctions are also given analytically for the whole region 
(-L,/2, L,/2) X (- L,/2, L,/2)-similarly to the eigenfunctions of the continuum free- 
electron model. In the conventional tight-binding method the presence of a periodic 
potential is assumed implicitly and the zero-field energy spectrum is given by a bounded 
Bloch band. The present approach represents only a convenient way of transcribing the 
differential equation into a difference one; the choice of knots is not related to the actual 
crystal structure and the zero-field solution corresponds rather to the free-electron 
spectrum than to the Bloch band. 

To illustrate the method, we first consider the simplest case-equation (3) with V = 
0. This choice allows the separation of variables in the eigenfunctions of H and the 
reduction of the problem to one dimension. The eigenfunctions can be written in the 
form 

V ( X >  y )  = eik"unk(Y). (4) 

-(h2/2m> d2/dY2 + (mw$/2)(y - y>2unk(Y)  = E n k U n k ( Y )  ( 5 )  

The functions unk(y)  are the solutions to the equation 

where w, = 1 e \B/m and the coordinate Y is related to the wavevector k by the expression 
Y = 12k, l2 = h/mw,. 

The equidistant mesh of N+ 1 knots y i  = -L,/2 + ia, a = L,/N, i = 0 , 1 , .  . . , N, 
divides the interval (-L,/2, L , /2)  into finite elements and the basis functions are local- 
ised around the knots yi, i = 1, , . . , N - 1. The simplest version of the method is based 
on the piecewise-linear basis functions Fi E Co. The function Fi, i = 1, . . . , N - 1, differ 
from zero only for yiP1 < y < yi+l and are determined by the conditions Fi = 1, F j - l  = 
Fi+l  = 0. More precise approximations use cubic splines Bi E C 2 .  Each Bi is non-zero 
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Figure 1. The first two eigenfunctions in a narrow 
channel of width L = m (only its right-hand 
half is sketched), calculated by the finite-element 
methodusinglinear(brokencurve) andcubic( full 
curve) splines. The magnetic field B = 5 T, the 
wavevector k = 3 x lo-* m-l, the number of 
knots = 21. 

only between y iP2  and yi+z and in these two knots the value of Bi, its first derivative 
and its second derivative are equal to zero. The cases i = 0,1 ,  N - 1, N need special 
treatment. The explicit form of Fi, as well as that of Bj, may be found, e.g., in Prenter 
(1975). 

The matrix form of equation ( 5 )  is obtained via a direct evaluation of the matrix 
elements of H between the functions Fj or B,. Using the set of piecewise-linear functions 
we arrive at the tridiagonal Hamiltonian and overlap matrices. The error of the method 
in this case is proportional to u2. Cubic functions Bi lead to seven-banded matrices. The 
increase in complexity in the preparatory part, i.e. in the evaluation of the matrix 
elements, and in the numerical treatment of the matrix problem, is compensated for by 
the higher precision of calculation: the error is proportional to u4. Consequently the 
number of spline functions included and the dimensions of the matrices may be reduced. 
This appears to be advantageous particularly in two-dimensional problems. 

In the zero-magnetic-field case the problem is reduced to the one-dimensional, 
infinitely deep potential well. Then the analytic solutions are known and can be directly 
compared with the results obtained by the finite-element method. Both the linear and 
the cubic splines stand this test very well. Even for the quite small number of finite 
elements, N = 10, the method fits the analytic solution with an accuracy better than (at 
least for the first three eigenenergies) for eigenfunctions (with respect to 
the norm) and 5 X for eigenvalues when the linear and cubic splines 
are used, respectively. 

In strong magnetic fields, the wavefunctions are localised around the centre of motion 
Y and the differences between the linear and cubic splines become more pronounced. 
Naturally, the linear spline cannot follow a smooth curve of an eigenfunction if the 
distance between the knots is comparable with the distance between two neighbouring 
eigenfunction nodes. The conditions are not so stringent for the more accurate smooth 
cubic splines, as illustrated in figure 1. Moreover, the numerical convergence test for 
eigenvalues performed for the linear and cubic splines confirms that the approximate 
eigenvalues are higher than the exact values and that the error decreases as 1 /N2  for 
linear splines and as l/N4 for cubic splines, as follows from the error analysis. Figure 2 
shows examples of the wavefunctions and the current distributions calculated by the 

and 
and 3 X 
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Figure 2. The first four eigenfunctions (upper graph) and the corresponding current distri- 
butions (lower graph) calculated by the finite-element method using cubic splines for an 
infinite rectangular channel of width L = 2 X m, placed in a perpendicular magnetic 
field B = 0.3 T. The wavevector k = 0. The number of knots = 21. 

Figure3. Sketch of thepotentialin the two-dimen- 
sional system with an oblong well at its centre. 
The system length and width are 3 x m; the 
length, width and depth of the well are 
1.4 X 10-Rm; 3 X 10-*m and 1.25 x J ;  
respectively. 

finite-element method for an infinite rectangular channel placed in a perpendicular 
magnetic field. 

Let us now consider a more realistic model with a non-zero potential V(x,  y ) .  In 
order to show the versatility of the present method, let us investigate a narrow two- 
dimensional system with an oblong well at its centre as an example of a true two- 
dimensional problem (figure 3). This problem can simply be treated by constructing a 
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Figure 4. The charge-density distribution in the system outlined in figure 3, calculated by the 
finite-element method using bilinear splines. (a) and ( b )  correspond to the system without 
magnetic field, (c)  and (d)  to the system with the magnetic field E = 10T. The charge 
densities for the first two eigenenergies are depicted in (a ) ,  (c) and (b ) ,  (d ) ,  respectively. 
The eigenenergies E,(O) = 1.15 X J 
and & ( E )  = 2.80 x J are comparable with the well depth. 

J, E2(0) = 2.94 x J,  E, (E)  = 1.45 X 

rectangular grid and bilinear or bicubic splines. More details about the construction of 
various grids and two-dimensional splines can be found in Prenter (1975). Figure 4 shows 
the distribution of the charge density y j * y j  in the system sketched in figure 3, where the 
wavefunction y j  satisfies the boundary conditions (1) and (2). 

Let us investigate the influence of the magnetic field on the eigenenergies and the 
corresponding eigenfunctions. For the lowest energy the influence of the magnetic 
field on the charge-density distribution causes only small changes in the shape of the 
distribution (see figures 4(a), (c)), indicating that the wavefunction is localised in the 
well more strongly in the magnetic field. In contrast, the distribution for the second 
eigenenergy changes very dramatically (see figures 4(b) ,  (d)). It appears that the 
wavefunction is again localised strongly in the well, but is now shifted towards the edges 
of the well, so that a deep depression appears at the centre. The magnetic field enables 
the electrons to move also across the channel. Figure 4(d) documents the fact that the 
electron motion occurs predominantly along the well edges. 

In conclusion, the possibility of making use of the formal simplicity and versatility of 
the finite-element method for solving bound-state problems in narrow two-dimensional 
systems in magnetic fields has been outlined. Note that even the present preliminary 
results demonstrate that the finite-element method can be successfully used for cal- 
culations of the electronic structure of a two-dimensional electron gas in a magnetic 
field with moderate effort, and that this method can serve as an alternative for the 
conventional tight-binding model. A more detailed discussion of problems connected 
with actual calculations as well as practical applications of the method to scattering will 
be published. 
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